If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+49=400
We move all terms to the left:
a^2+49-(400)=0
We add all the numbers together, and all the variables
a^2-351=0
a = 1; b = 0; c = -351;
Δ = b2-4ac
Δ = 02-4·1·(-351)
Δ = 1404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1404}=\sqrt{36*39}=\sqrt{36}*\sqrt{39}=6\sqrt{39}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{39}}{2*1}=\frac{0-6\sqrt{39}}{2} =-\frac{6\sqrt{39}}{2} =-3\sqrt{39} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{39}}{2*1}=\frac{0+6\sqrt{39}}{2} =\frac{6\sqrt{39}}{2} =3\sqrt{39} $
| 2b+14=2 | | f+455=733 | | 6(5x+1)=36 | | x+8)×4=21×4 | | 14/n=7/21 | | y+1.4y=1072 | | 24=-4c | | V=a3 | | -35=p-7 | | 7a-11+7a=-6a+9 | | -35-5x=-4x-6(x+5) | | 2c+8=8c+2 | | 10-6=n-30 | | 6(s+2)-21=9+15s | | 7x+14x+13x+15=180 | | 1/2(3k-9)=-3/4(2k+11) | | 9(m-2.6)=25.2 | | 4r•3=96 | | 2x−10=32 | | 9+y/2=−15 | | 136=8(5b-8) | | 9+y2=−15 | | -36=y+8 | | 4m+3=6–2m | | 90=-5g | | 32x8=0 | | -3(r-11)=15 | | -5m=-3m+8 | | (4x-15)+(6x+5)+90+90=360 | | x/3.5=19.7 | | 20=d+11 | | 2(x-1)-3x=6,x= |